Super-resolution fluorescence imaging of organelles in live cells with photoswitchable membrane probes.

نویسندگان

  • Sang-Hee Shim
  • Chenglong Xia
  • Guisheng Zhong
  • Hazen P Babcock
  • Joshua C Vaughan
  • Bo Huang
  • Xun Wang
  • Cheng Xu
  • Guo-Qiang Bi
  • Xiaowei Zhuang
چکیده

Imaging membranes in live cells with nanometer-scale resolution promises to reveal ultrastructural dynamics of organelles that are essential for cellular functions. In this work, we identified photoswitchable membrane probes and obtained super-resolution fluorescence images of cellular membranes. We demonstrated the photoswitching capabilities of eight commonly used membrane probes, each specific to the plasma membrane, mitochondria, the endoplasmic recticulum (ER) or lysosomes. These small-molecule probes readily label live cells with high probe densities. Using these probes, we achieved dynamic imaging of specific membrane structures in living cells with 30-60 nm spatial resolution at temporal resolutions down to 1-2 s. Moreover, by using spectrally distinguishable probes, we obtained two-color super-resolution images of mitochondria and the ER. We observed previously obscured details of morphological dynamics of mitochondrial fusion/fission and ER remodeling, as well as heterogeneous membrane diffusivity on neuronal processes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Photoswitchable fluorescent nanoparticles and their emerging applications.

Although fluorescence offers ultrasensitivity, real-world applications of fluorescence techniques encounter many practical problems. As a noninvasive means to investigate biomolecular mechanisms, pathways, and regulations in living cells, the intrinsic heterogeneity and inherent complexity of biological samples always generates optical interferences such as autofluorescence. Therefore, innovati...

متن کامل

Super-Resolution Imaging Through Stochastic Switching and Localization of Single Molecules: An Overview

The resolution of fluorescence microscopy had traditionally been limited to ~200–300 nm due to the diffraction of light. Recently, this resolution limit has been broken using mainly two classes of methods, one of which utilizes photoswitching of fluorophores to temporally separate the spatially overlapping images of individual molecules such that the positions of these molecules can be precisel...

متن کامل

Fast Maximum Likelihood High-density Low-SNR Super-resolution Localization Microscopy

Localization microscopy such as STORM/PALM achieves the super-resolution by sparsely activating photoswitchable probes. However, to make the activation sparse enough to obtain reconstruction images using conventional algorithms, only small set of probes need to be activated simultaneously, which limits the temporal resolution. Hence, to improve temporal resolution up to a level of live cell ima...

متن کامل

Noninvasive Stem Cell Labeling Using USPIO Technique and their Detection with MRI

Background: To date, several imaging techniques to track stem cells are used such as positron emission tomography (PET), single photon emission computed tomography (SPECT), Bioluminescence imaging (BLI), fluorescence imaging, CT scan and magnetic resonance imaging (MRI). Although, overall sensitivity of MRI compared to SPECT and Bioluminescence techniques are lower, but due to high spatial reso...

متن کامل

Aptamers provide superior stainings of cellular receptors studied under super-resolution microscopy

Continuous improvements in imaging techniques are challenging biologists to search for more accurate methods to label cellular elements. This is particularly relevant for diffraction-unlimited fluorescence imaging, where the perceived resolution is affected by the size of the affinity probes. This is evident when antibodies, which are 10-15 nm in size, are used. Previously it has been suggested...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 109 35  شماره 

صفحات  -

تاریخ انتشار 2012